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Abstract. The two-dimensional king model in the rectangular lattice is generalised to 
include m-spin interactions in  one direction and two-spin interactions in the other. This 
model is self-dual and the critical line is the same as in the conventional Ising model with 
m = 2 .  

The m = 3 model is solved in a generalised mean-field approximation where the 
transition is first order. Using a phenomenological renormalisation group approach, 
approximate values of the thermal and magnetic exponents y t  and y h  are obtained for 
m = 3 and m = 4. The m = 3 results together with symmetry arguments suggest that this 
model belongs to the same class of universality as the Baxter-Wu and four-state ferromag- 
netic Potts models. When m = 4 the transition is probably first order. 

1. Introduction 

Multispin interactions may lead in lattice statistical models to a rich variety of critical 
behaviour. Let us mention the exactly solved eight-vertex model with continuously 
varying exponents (Baxter 1972) which may be formulated as an Ising model with 
two- and four-body interactions (Wu 1971, Kadanoff and Wegner 1971), the Baxter- 
Wu model (Baxter and Wu 1974, Baxter 1974), an Ising model with three-spin 
interactions on every face of the triangular lattice which belongs to the same class of 
universality as the four-state Potts model (Potts 1952) according to the den Nijs 
conjecture (den Nijs 1979). In other cases universal behaviour is observed as in the 
ferromagnetic q -state Potts model with multispin interactions which was introduced 
to describe site percolation in the 4 = 1 limit (Giri et a1 1977, Kunz and Wu 1978). 
Multisite terms were also used in more physical models to describe the phase diagrams 
of metallic alloys (Sanchez and de Fontaine 1981) or exotic structures in Heisenberg 
magnets (see for example Nagaev (1982) for a review). 

In the present work we introduce a new class of anisotropic two-dimensional ( 2 ~ )  

Ising models with m -spin interactions in the spatial (horizontal) direction and the 
usual two-spin Ising interaction in the temporal (vertical) direction on the rectangular 
lattice$ (figure 1). The interest of such a formulation lies in the fact that, as in the 
q-state Potts model, one may study the evolution of the critical behaviour as a function 
of a parameter which here is the number of spins m entering the multisite interaction. 
The model may be further generalised by introducing n -spin interactions in the 

t Laboratoire AssociC au CNRS No 1 5 5 .  
$ A  preliminary account of this work was given in Turban (1982a). The I D  quantum version was presented 
in Turban (1982b) and in Penson ef a1 (1982). 
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3572 J-M Debierre and L Turban 

temporal direction and/or Potts instead of Ising spins (Turban 1982c and Turban and 
Debierre 1982). 

These models are self-dual and when the transition is unique, the free energy is 
singular on the critical line 

sinh(2Kx) sinh(2KT) = 1 (1.1) 

which is m-independent. In equation (1.1) K ,  and K, are the interactions (in units 
of k , T )  in the spatial and temporal directions. The outline of the paper is as follows. 
In 5 2 we give a mean-field treatment of the m = 3 model. The self-duality and exact 
results for the critical point are established in 8 3. The m = 2, 3 and 4 models are 
studied using the phenomenological renormalisation group method (Nightingale 1976) 
and finite-size scaling in li 4. We end with a discussion of these results in 8 5 .  

2. Mean-field approximation 

Mean-field theory is often a useful first step in the study of a phase transition. Although 
it may be qualitatively wrong in predicting the order of the phase transition in 
low-dimensional systems, it gives exact information about the nature of the transition 
above the critical dimensionality d ,  (which here will depend on m as it depends on 
q in the Potts model) when fluctuations become negligible. 

Let the Hamiltonian of the system be written 
m 

where the {s} are Ising spins (s = kl) associated with the N sites of a rectangular 
lattice; the first sum runs over the N simple links 1 in the temporal direction and the 
second on the N multiple links L between m successive spins in the spatial direction; 
h = H / p  is the external field. A natural generalisation of the usual mean-field theory 
consists in working with a cluster of m - 1 spins (sl, s2 ,  . . . sm-l) in the spatial direction 
(figure 1). This will leave us with m - 1 selfconsistent equations for the variational 
parameters so that m has to be specified. We give here a solution of the first non-trivial 
case where m = 3. 

Figure 1. Ising model with m-spin interactions K ,  and two-spin interactions K, on the 
rectangular lattice ( m  = 3). In the mean-field approximation one works on a two-spin 
cluster (sl, s2) in the spatial direction. 
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Let us introduce two variational parameters CL and 4 (see for example Sherrington 
(1980))  and make the following substitutions (figure 1). 

K,s 1 sf + (s 1 -PI21 (2.2a) 

K ,  s 1 s 2 S, + CLK, (S 1 s 2 - 4 I 2 ) (2.26) 

KxS2SISk + @Kx (s2-pI2)  (2 .2c)  

where subtractive terms are included to avoid double counting of the interactions in 
the cluster free energy. The cluster effective Hamiltonian 

-PHIZ(CL, 4)  = KefiSls2 + Heft(s1+ ~ 2 )  (2.3) 

Kee = 2~cK.x (2.4) 

Hee = 2pKT + 4 K x  + H. (2.5) 

PIWJ, p )  = ~ ( ~ c L K ,  + CL 2 ~ T )  - WTr e x p [ - ~ ~ l 2 ( 4 ,  F 111 

involves an effective interaction 

and an effective field 

Minimisation of the cluster free energy 

(2.6) 

with respect to 4 and p leads to 

p = (sd = Tr s1 exp(-PHl2)lZ12 

with 

Z 1 2  = Tr exp(-PH12) = 4(cosh2Heff cosh Kee + sinh2 Hee sinh K e d .  

We get two selfconsistent equations 

4 = (s1s2) = Tr s1s2 exp(-PH12)/Z12 (2.7a, b 

(2.8 

tanh Keff  + tanh2 Hee 
1 + tanh2 HeE tanh Ketf 

d = -  (2.9a, b )  tanh Hen(l f tanh  Kee) ’ = 1 + tanh2 He, tanh Kee 

where Keff  and Heff  are given by equations (2.4) and (2.5).  When H = 0 the trivial 
solution 4 = p = 0 is stable only for high enough temperatures. The non-trivial solution 
with a spontaneous magnetisation p f O  was studied numerically on a model with 
isotropic couplings K, = K ,  = K. The two solutions exchange their stability at the 
critical point K ,  for which 

f(P,  4 )  =m, 0). (2.10) 

The spontaneous magnetisation given in figure 2 is discontinuous at K ,  = 0.3065 
whereas the exact value is K ,  = 1 / 2  In ( 1  + J 2 )  = 0.44069 by duality. The transition 
is first order with m = 3 whereas it is second order with m = 2,  the usual Ising model. 
We are in a situation similar to that of the ferromagnetic q-state Potts model, m and 
q playing similar roles. For any m > 2 one may expect the transition to change from 
second to first order at a critical dimensionality d,(m). This point will be further 
explored in the renormalisation group study (9: 4). 
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Figure 2. Spontaneous magnetisation of the m = 3 Ising model in the mean-field approxi- 
mation. 

3. Self-duality and related exact results 

In this section we show that the self-duality property of the usual ZD Ising model with 
m = 2 (Wannier and Kramers 1941) is conserved for any m. 

In the Hamiltonian of the system (2.1) with periodic boundary conditions, K, and 
K, may be chosen positive without loss of generality in zero external field since the 
partition function 2, is invariant under a change of sign of the interactions. A minus 
sign may be eliminated through a spin reversal on an appropriate sublattice. 

The partition function 

may be written as 

where we made use of the identity (Savit 1980) 

with 
CO(K) = cosh K C1 ( K )  = sinh K .  

(3.3) 

(3.4) 
The spin products in (3.2) may be rearranged in order to group together all the s i  
associated with the same site i. This leads to 

(3.5) 

where the first sum is over the link variables A,,  A T  = 0, 1 and the exponent & A  is a 
sum over the A variables involving site i (figure 3). 

Taking the trace over the spins s i ,  we get 

(3.6) 

where &(n) is the Kronecker delta function mod 2. 
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Figure 3. The exponent Z,A in equation (3 .5 )  involves the two A, and m A, associated 
with site i (here m = 3). 

The dual lattice is constructed by placing new Ising spins ui in the centre of the 
faces of the original lattice when m is even or in the middle of the temporal links l 
of the original lattice when m is odd (figure 4) .  These dual spins may be used to get 
a representation of the A variables (figure 5) 

m 

( k = I U k >  
A T ( r ) = ;  1- n A, ( U )  = ;( 1 - c + i ~ j )  (3.7a, b )  

which automatically satisfies the Kronecker delta function in equation (3.6). In the 
duality operation the temporal and spatial directions are exchanged, a multiple (simple) 
link &(/d)  on the dual crosses a simple (multiple) link 1(L) on the original lattice. 
Since X i  A involves two A, and m A,, it may be written as (figure 6 )  

A = ( m  + 2) /2  - :[(m + 2 )  spin products]. 
i 

(3.8) 

Each dual spin enters two spin products in the bracket which may assume the following 
values 

m + 2 - 4 v  v € N  O ~ v c I ( m / 2 ) + 1  (3.9) 
where I ( x )  means the integer part of x and the state with all the spins up corresponds 
to v = 0. 

Equations (3.8) and (3.9) give 

z A = 2 v  (3.10) 

l o )  i b l  

Figure 4. The original (full lines) and dual (broken lines) lattices when m is even ( a )  or 
odd (b ) .  
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Figure 5. Correspondence between the A, and A, 
variables on the original lattice (full lines) and the 
spin products on the dual lattice (broken lines) when 

Figure 6. I ; ,A  in the dual representation (equations 
(3.7a,6) in the text). In this case ( m  = 3 )  one gets 
Z,A = ~-~[u,u,+;+u,+~u,+~+~+(~,+~;u,+~;+i + 

m is even (a )  or odd (6). U P l + i U l + 2 i  +u,+iu~+i+Pl,+2~+iI. 

which is even as required. Any transformation of the dual spins leaving the energy 
of the dual configurations invariant does not change the {A} (figure 7) .  There are 

(3.11) 

such transformations (figure 8) where g also gives the ground-state degeneracy of the 
model. 

io1 l b i  

Figure 7. Two dual spin configurations leading to the same graph for the A variables in 
the high-temperature expansion with m = 4. The dual configuration on ( 6 )  may be deduced 
from (a )  by reversing the dual spins on the sublattice indicated by arrows. The Hamiltonian 
of the system is left invariant under this global symmetry transformation. 

Figure 8. Symmetry transformations leaving the four-spin interaction invariant (reversed 
spins are indicated by broken lines). The degeneracy of the m-spin interaction is also the 
ground-state degeneracy of the system since a unique ground-state configuration may be 
built, spin by spin, from the four-spin configuration. 



20 Ising model with multispin interactions 3577 

Collecting these results, the partition function becomes 

Z m  = 2N+1-m 1 n CA,c,)(KT) II C A = ( ~ ) ( K ~ )  
(U) L d  Id 

or using the identity 

(3.12) 

CA (K) =cosh K exp(A In tanh K )  (3.13) 

we get 
Zm(K,, KT)=2'-"(sinh2KX sinh2KT)N'2Zm(&,&) (3.14) 

where the dual couplings kX and ZT are so defined that 

sinh 2kT sinh 2Kx = 1 sinh 2 z x  sinh 2KT = 1. (3.15a, 6 )  

It follows immediately that the model is self-dual and, when there is a unique phase 
transition, critical along the line 

sinh 2KXc sinh 2KTc = 1 (3.16) 

which is left invariant by the duality transformation. 
The most remarkable feature of this result is that although the nature of the 

transition may change with m, the number of spins involved in the interaction, the 
critical line itself is left unchanged. 

Duality may be used to get some further information about the properties of the 
model at its critical temperature. Consider a model with isotropic values of the 
couplings 

K, = K, = K = J/kBT. 

Equation (3.16) gives the critical temperature 

sinh2(2J/kBTc) = 1 

and, in  the thermodynamic limit, the free energy per site is 

f (T)  = lim - (kB  TIN) In Zm ( J /kB  T) = g(  T) + (T/F)f( F )  
N-CC 

where f ( T )  is the dual temperature such that 

sinh(2J/kBT) sinh(2J/kBF) = 1. 

According to (3.14) and (3.19) 

g (T)  = -kBT In sinh(2J/kBT) 

so that F(TJ = T, and g(TJ = 0. 
The entropy per site is 

At the critical temperature 

(3.17) 

(3.18) 

(3.19) 

(3.20) 

(3.21) 

(3.22) 

(3.23) 
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so that 

and the internal energy per site is 

(3.24) 

(3.25) 

When the transition is continuous, the internal energy keeps its Ising value at the 
critical temperature and this is also true for the average when the transition becomes 
first order, with higher m values. 

4. Phenomenological renormalisation group approach 

4.1. Phenomenological scaling (Nightingale 1976, Derrida and De Seze 1982) 

Working on an infinite strip, n sites wide, the 2~ system is critical only when we take 
the thermodynamic limit n +Co. It follows that any physical quantity Q ( k )  with a 
singular part behaving near the critical point as 

Q,(K)-IK -KcIx4 (4.1) 

remains regular on the strip with a finite width. In the phenomenological scaling 
hypothesis, one assumes that a scaling function Fq exists, such that 

Qn(K)  = Q m ( K ) F q [ n / 5 m W ) l  (4.2) 

where t m ( K )  is the correlation length of the infinite system 

[ m ( K )  -IK -Kc/-”. (4.3) 

Qn (K,) - n-’q’” (4.4) 

Compensation of the singularities of Q, and 5, requires that 

for large n.  
Considering two strips with width n and n’ and two couplings K and K ’  such that 

Sao(K)lSm(K‘) = n /n ’  (4.5) 

equations (4.2) and (4.5) lead to 

Qn (K) /Qn  (K’)  = Q m ( K ) / Q m ( K ’ ) .  (4.6) 

When applied to the correlation length itself (4.6) gives the recursion of phenomeno- 
logical scaling 

5 n  ( K ) / n  = 5 n , ( K ’ ) / n ‘  (4.7) 

telling us how the coupling is renormalised in the change of scale n / n ’ .  
Since the infinite system is scale invariant at the critical point K ,  an approximate 

value of the critical coupling Kc(n, n ‘ )  is obtained as the fixed point of the recursion 
relation. The correlation length exponent v ( n ,  n’) follows from an expansion near the 
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fixed point 

Other critical exponents may be obtained using (4.4) 

at the approximate critical coupling and with the approximate correlation length 
exponent. 

4.2. Finite size scaling (Blote and Nightingale 1982) 

l / n  may be considered as a relevant scaling field since it destroys the singularity when 
non-zero. Let q‘” be the singular part of the physical quantity Q with anomalous 
dimension y q ;  q‘”’ is an homogeneous function of l / n  and of the other scaling fields 
U ,  so that in  a change of scale b 

bYqq‘”’(ul, u 2 , .  . . , l / n ) = q ( ” ( b Y 1 u l ,  b ’ * u ~ ,  . . . , b / n ) .  (4.10) 

For the derivatives of q‘” with respect to the scaling fields we get 

q (U], u 2 , .  . . , l / n ) / a k l u l a k 2 u 2 . .  . (4.11) a ( k l + k , +  1 ( 0 )  qy5. j -  - 

- - b->,+klYI+k,y2+ q ( k , . k 2  ’ ( b y l u l ,  b Y 2 u 2 , .  . . , b / n )  

so that with b = n the following large-n behaviour at the critical point ( u l  = u 2  = . . . = 0) 
is expected 

(4.12) 

This is equivalent to the phenomenological scaling result (4.4) with k l  = 

When applied to the singular part of the free energy f with y f = d  and to the 

Lk .k , I - Y, + k 1 > 1 + k Y , +. . - n  

k2  = . . . = 0, yt  = 1 / v  and xq  = y q / y t  as required. 

inverse correlation length K with y K  = 1,  equation (4.12) gives 

(4.13a, b )  

(4.13c, d )  

for the finite-size scaling at large n of the specific heat C, the susceptibility x and the 
temperature and field derivatives K ( ~ )  and K ‘ ~ )  of the inverse correlation length at the 
critical point of the infinite system. 

This analysis supposes that we work with the singular parts and ignores corrections 
to scaling. Better fits are obtainable using an expansion 

30 

Q, =CO+ cinL’ 
i = 1  

(4.14) 

where CO takes into account the regular part and t l  gives the leading singularity (Blote 
and Nightingale 1982). 
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4.3. Numerical methods 

On a strip with periodic boundary conditions, length L in the temporal direction and 
width n, the partition function may be obtained by the transfer matrix method 

2” 

i = l  
2, =Tr Tk = 1 A: (4.15) 

where the A i  are the eigenvalues (A > A 2  > . . .) of the transfer matrix 

Tn (i, j )  = exp[-PH, ( i ,  j)I (4.16) 

where H ( i ,  j )  is that part of the Hamiltonian (2.1) involving the spins of two successive 
rows i and j in the temporal direction with weight one-half for border interactions in 
order to avoid double counting in the matrix product. The free energy per spin f,, is 
given by 

-Pfn = lim ( l /nL) In 2, = (In Al ) /n  
L+cO 

(4.17) 

and the correlation length is 

(4.18) 

We use isotropic couplings K, = K, = K and periodic boundary conditions in  the spatial 
direction because free boundary conditions would produce prohibitive surface effects 
with narrow strips due to the m-spin interaction. The size of the transfer matrix may 
be reduced by taking the rotational symmetry into account. 

In order to preserve the ground-state degeneracy of the problem we must use 
strips with a width which is a multiple of m, the number of spins entering the interaction 
in the spatial direction. 

K,(n, n’) and v(n,  n’)  are calculated with an accuracy of x,, and 
Cn are obtained through numerical differentiation of A with six significant digits. The 
precision on A 1 was increased in the calculation of the derivatives. 

As a test, table 1 gives the values of Kc(n, n‘) ,  v(n,  n’)  and -y(n, n’) obtained through 
phenomenological scaling ((4.7), (4.8) and (4.9)) for m = 2, the usual Ising model. 
The results are in complete agreement with the work of Nightingale (1976). Table 
2 gives the same quantities and a ( n ,  n‘), the specific heat exponent, when m = 3. 
Table 3 gives y t  and Y h  obtained through two-point fits of C, x, K ( ~ ’  and K ( ~ )  (4.13) 
at the exact critical coupling K,, which is known by duality (§  3) .  Table 4 gives the 
same results with m = 4 .  K:’ could not be used in this case because it vanishes for 
even m values. Figures 9 and 10 give the field dependence of the susceptibility and 
the temperature dependence of the specific heat with increasing strip width for m = 4. 

-1 tn = K , ,  = l / l n (AI /A2) .  

and 

5. Discussion 

Duality shows that the critical line does not depend on m ; this results from a competition 
between the range of the interactions and the ground-state degeneracy; both are 
increasing with m, the first favouring order and the second disorder. 

The main interest of this model lies in the change in the nature of the transition 
from second to first order as m is increased, a feature already encountered in the 
ferromagnetic q-state Potts model as a function of q. In a recent work on a quantum 
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Table 1. Critical coupling K,, correlation length exponent U and susceptibility exponent 
y obtained through phenomenological scaling for the conventional Ising model ( m  = 2). 

(4 ,3)  0.430 8837 0.944 18 1.6340 
(5,4) 0.435 9532 0.964 39 1.6757 
( 6 5 )  0.438 2583 0.977 24 1.7027 
(7,6) 0.439 3099 0.984 58 1.7180 
Exact values 0.440 6868 1.0 1.75 

Table 2. The same as in table 1 for the m = 3 Ising model. The four-state Potts model 
values are added for comparison. 

in, n ' )  KAn ,  n ' )  v ( n ,  n ' )  r(n, n ' )  a (n ,  n ' )  

(3,6) 0.418 2968 0.722 59 1.1847 0.963 04 
(6,9) 0.433 6138 0.726 94 1.2033 0.673 96 
Potts q = 4 0.666 67 1.1667 0.666 67 

Table 3. Thermal and magnetic exponents y t  and y h  obtained through finite-size scaling 
on the temperature and field derivatives of the inverse correlation length ( K " '  and K ' ~ ) ) ,  

on the specific heat C and susceptibility x. The den Nijs conjectures for the four-state 
Potts model are added for comparison as well as the BIote and Nightingale values when 
possible. 

( n ,  n ' )  Yt(Kl f i )  YJC) yh(Kihi) Yh(x 1 

(3,6) 1.2411 (1.2787) 1.6729 (1.4514) 1.9535 (1.9049) 1.9591 (1.9152) 
( 6 9 )  1.2832 1.4690 (1.3962) 1.9198 1.9230 11.8835) 
Pottsq = 4  1.5 1.5 1.875 1.875 

Table 4. The same as in table 3 for the m = 4  king  model. The exact values for a 2~ 
discontinuity fixed point are added for comparison. 

(4 ,8)  1.4623 1.8994 - 1.9587 
Discontinuity fixed point 2 2 2 2 

q-state Potts version of the present model in (1 + 1) dimensions (Turban and Debierre 
1982) we got an approximate expression, through a l / q  expansion of the latent heat 
(Kogut 1980), for the curve q, (m)  on which the transition changes from first to second 
order (figure 11). This curve gives the 2~ behaviour of the classical formulation. We 
found q,(2) = 6 and q , ( 3 )  = 3 in the first-order approximation. A simple rescaling of 
these results by a factor $ gives the exact result 4 J 2 )  = 4 (Baxter 1973) and suggests 
q c ( 3 )  = 2 .  
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\ n :  4 

Figure 9. Field dependence of the susceptibility for 
n =4 and n = 8 in the four-spin model. The curve 
is symmetric about h = 0 for even values of m. 

m 

1 2 3 4 
l / K  

Figure 10. Temperature dependence of the specific 
heat for strips of width n = 4 and n = 8 and four-spin 
interactions. 

9 

Figure 11. Frontier between first- and second-order transition in the (m, q )  plane as given 
by a l / q  expansion of the latent heat of a Potts generalisation of the present model (q  = 2)  
in (1 + 1) dimensions. The point ( m  = 2, q = 4) belongs to the exact frontier and the point 
( m  = 3, q = 2) probably does also. 

The four-state Potts model with m = 2 and the Ising model with m = 3 are discrete 
spin models with the same ground-state degeneracy g = 4. Furthermore the Baxter- 
Wu model has also g = 4 and is known to belong to the same class of universality as 
the four-state Potts model. As shown in figure 12, the Baxter-Wu and m = 3  king 
models may be regarded as two limiting cases of the same model. All these facts led 
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Figure 12. Generalised k ing  model with three-spin interactions ( a ) .  In the limit K ,  = K2 = 
K, we get the Ising model with three-spin interactions and the Baxter-Wu model corres- 
ponds to the limit K ,  +a, K 2  + 0 ( b ) .  

us to conjecture that the m = 3 Ising model belongs also to the class of universality 
of the q = 4 Potts models and gives the border between second- and first-order 
transitions in 2 ~ .  

One may verify in tables 2 and 3 that the renormalisation group results are 
consistent with this conjecture. In table 3 we compare our results with the q = 4 Potts 
values obtained by two-points fits of the Blote and Nightingale results (1982) with 
the same strip width (3 ,6)  and (6,9) .  We get the same behaviour with n although 
their (3,6) results are closer to our (6 ,9)  results which may be due to the longer range 
of the interaction in our case leading to a slower convergence. 

The m = 4 results in table 4 are comparable to the discontinuity fixed point values 
y t  = 2 and Y h  = 2 in 2 ~ .  

Penson et a1 (1982) have independently studied the I D  quantum version of this 
model with the phenomenological scaling method. Working with larger sizes (n  = 3, 
6, 9, 12, 15 for n = 3 and n = 4, 8, 12 for m = 4) they were able to extrapolate their 
correlation length exponent values and got v,(3) = 0.72 which is quite close to the 
corresponding values of Blote and Nightingale (1982) for the q = 4 Potts model and 
v,(4) --. 0.5 in agreement with a discontinuity fixed point. The finite-size scaling 
relations given in equations (4.13a, b, c, d )  are expected to break down for an infinite 
strip in the case of a discontinuity fixed point. According to the analysis of Blote and 
Nightingale (1982) one should get then an exponential variation with n for large n 
instead of a power law. They have effectively found a linear variation of y t  and y h  

with n when q > 4 for C,,, ,yn and a 2 K n / a t 2  but also convergent estimates from ~ ~ ( q  = 64) 
and K h  (q = 8, 64) agreeing with the discontinuity fixed-point values like the m = 4 
results of Penson et a1 (1982). 

Finally let us mention that the m-spin Ising model may be changed, through an 
exact prefacing transformation (Berker 1975), into a more conventional model with 
2"-' states per site and nearest-neighbour interactions only by using cells of two spins 
in the spatial direction. 
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